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Abstract

We review the literature on randomized and sparsely connected neural networks and intro-
duce a novel framework in which each neuron in the hidden layers receives a fixed number of
random inputs from any preceding layer while the output layer remains fully connected. The
proposed methodology is described in detail, including the construction of a directed acyclic
graph (DAG) to represent the network, the training procedure on the MNIST dataset, and ex-
tensive parameter exploration. Our preliminary results indicate that increasing the number of
inputs per neuron yields a higher return on parameter investment compared to increasing layer
or neuron counts. Future work will investigate these findings further. The complete source code
and CSV results are included as supplementary material.

1 Introduction

Deep neural networks (DNNs) have advanced considerably in recent years, driven by innovations
such as skip connections, sparse connectivity, and random initialization. In this work, we provide
a review of the literature of related approaches and introduce a new framework where each neuron
in the hidden layers is connected to a fixed number of randomly selected inputs from any preceding
layer, followed by a fully connected output layer. This architecture is motivated by the need
to balance network capacity with parameter efficiency and to explore the potential benefits of
randomized connectivity patterns. We aim to offer a clear and reproducible methodology that may
inspire further research in this area.

2 Related Work

Several lines of research have explored random connections and sparsity in neural networks. In the
following subsections, we summarize key contributions that have influenced our work.

2.1 Randomly Wired Neural Networks

Xie et al. [15] introduced the concept of random wired neural networks utilizing classical random
graph models such as Erds-Rényi, Barabási-Albert and Watts-Strogatz. Their results indicate
that unconventional connectivity patterns can be competitive with hand-designed architectures.
Mendes [9] further validated these findings through extensive empirical studies.

1



2.2 Gradient Descent and Skip Connections

Skip connections have been shown to improve training dynamics in deep networks. Weinan et al. [14]
demonstrated that such connections facilitate convergence during gradient descent. Additional
studies by Oyedotun et al. [10] and Shan et al. [11] have examined their impact on optimization
and generalization, even incorporating them within neural architecture search frameworks.

2.3 Random Vector Functional Link Networks

Random Vector Functional Link (RVFL) networks offer an alternative to conventional training
methods by using randomization in hidden layers. Katuwala et al. [7] proposed a deep RVFL
(dRVFL) model with randomly initialized and fixed hidden layers. Hu et al. [3] further developed
an ensemble approach that incorporates random skip connections. Huang et al. [4] provided a
comprehensive survey of extreme learning machines (ELMs), emphasizing their efficiency and robust
approximation capabilities through randomization.

2.4 Randomization-Based Neural Architectures

Randomization has been central to several neural network design strategies. Suganthan and Katuwal
[13] discussed non-iterative training and stochastic configuration networks, while Berry and Quoy [1]
examined random recurrent networks and the emergence of structured connectivity through Hebbian
learning.

2.5 Sparse Connectivity and Evolutionary Training

Sparse connectivity is considered an efficient alternative to dense architectures. Mocanu et al. [7]
introduced Sparse Evolutionary Training (SET), which iteratively prunes and regrows connections
during training. Liu et al. [13] further demonstrated that networks can be trained with a fixed
parameter budget while maintaining competitive performance.

2.6 Optimization Techniques and Network Architectures

The success of deep learning has been underpinned by effective optimization methods such as Adam
optimizer [8] and batch normalization [6]. In parallel, architectural innovations such as highway
networks [12], deep residual networks (ResNets) [2], wide residual networks (WRNs) [16], and
densely connected networks (DenseNets) [5] have significantly advanced network performance. The
lottery ticket hypothesis [12] further suggests that sparse subnetworks can be effectively trained in
isolation.

3 Methodology

In this work, we propose a deep neural network framework based on a modular computational
graph. This section describes the network wiring, graph construction, training procedure, and the
experimental parameter exploration.

3.1 Network Wiring

Traditional feedforward networks employ dense, layer-to-layer connections. Our approach deviates
from this norm in two ways:
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1. Random Sparse Connections: Each neuron in the hidden layers randomly selects exactly
I inputs from any preceding layer (including the raw input layer). If fewer than I inputs are
available, all available inputs are used. The selection is performed without replacement.

2. Fully Connected Output Layer: The final layer is fully connected to every neuron in the
network, ensuring that all features contribute to the final decision.

Figure 1 illustrates a comparison between a standard feedforward network and the proposed archi-
tecture with random sparse internal connections.
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Figure 1: Comparison of network wiring strategies. (Top) A standard feedforward network with
dense sequential connections. (Bottom) The proposed architecture with random sparse internal
connections and a fully connected output layer.
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3.2 Graph Construction and Compilation

The computational graph is assembled as follows:

1. Component Definition: Inputs, outputs, constants, learned variables, and operations are
defined.

2. Connection Specification: Relationships among these components are established to form
the network.

Once constructed, the graph is compiled via dependency resolution, which organizes operations into
a parallel forward execution schedule. This facilitates:

• Insertion of inputs,

• Execution of a forward pass to compute outputs, and

• Backpropagation to compute gradients with respect to learned variables.

An integrated automatic differentiation module then performs gradient descent using a squared
error loss function.

3.3 Training Procedure

Training is performed on mini-batches of 256 samples randomly drawn with replacement from the
60,000-sample MNIST training set. Approximately 235 epochs are required to expose the network
to the entire dataset. The training procedure includes:

1. Initialization: All learned variables are initialized with small random values drawn uniformly
from (−0.0001, 0.0001).

2. Gradient Computation: For each mini-batch, gradients are computed for each sample and
then averaged.

3. Optimization: The Adam optimizer [8] is applied with default parameters (β1 = 0.9, β2 =
0.999, ϵ = 10−8) and a learning rate of 0.001.

4. Regularization: A small weight decay factor of 0.9999 is applied to every non-constant
learned variable at the end of each epoch.

No additional regularization techniques (such as dropout, L1, or L2 regularization) were used.
Training continued until approximately 100,000 gradient updates had been processed, corresponding
to roughly 1.6 exposures per training sample.

3.4 Network Architecture

The network architecture is defined as follows:

Input Layer: Normalized MNIST images (with pixel values scaled to [0, 1]) serve as input. No
further operations are applied at this stage.

5



Randomly Connected Neuron Block: This block consists of L layers, each containing N
neurons. For each neuron:

• Up to I inputs are randomly selected from any preceding layer (including the input layer).

• If fewer than I inputs are available, all available inputs are used.

Output Layer: The final layer (layer L + 1) includes 10 neurons corresponding to the MNIST
digit classes (using one-hot encoding). This layer is fully connected to all preceding layers, ensuring
complete feature integration.

Activation Function: All neurons (in both hidden and output layers) use the LeakyReLU acti-
vation function with a leakiness coefficient of 0.01 to mitigate the issue of inactive neurons.

3.5 Parameter Exploration

We trained nearly 1000 neural networks with varying configurations to assess the impact of key
parameters:

• Number of layers (L): 1 to 100,

• Neurons per layer (N): 1 to 100,

• Number of random inputs per neuron (I): 1 to 100.

This exploration aims to identify the minimal requirements for effective learning and to evaluate
trade-offs between network capacity and performance.

3.6 Data Preprocessing and Evaluation

Preprocessing: The MNIST dataset is normalized on a per-component basis so that all input
features fall within the range [0, 1]. Output labels are converted to one-hot encoded vectors, and
all samples are retained in both the training and test sets.

Evaluation: After training, each test sample is processed via a forward pass. The predicted class
is determined by applying the argmax function to the output vector, and performance is measured
as the percentage of misclassified samples (argmax error). Evaluation on the training set is also
performed to assess generalization, ensuring that no test data is inadvertently used during training.

4 Results

Our experiments indicate that uniformly increasing all parameters (neuron count, layer count, and
neuron input count) consistently improves accuracy until an asymptotic limit is reached. Notably,
when the parameter budget is constrained, increasing the number of inputs per neuron appears
to yield a higher return on performance than simply increasing the number of layers or neurons
per layer. This suggests that providing neurons with access to a broader set of features may be
more beneficial than merely increasing network depth or width, particularly given that the MNIST
dataset comprises 784 features.

Figure 2 shows that increasing the layer count alone, without a corresponding increase in neuron
count or input connections, results in suboptimal performance. Similar trends are observed in
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Figure 3 for the neuron count. In contrast, Figure 4 demonstrates that networks with higher
numbers of inputs per neuron consistently achieve lower test argmax errors. The 3D scatter plots
(Figures 5 and 6) further illustrate the combined effects of these parameters on network performance.

It is noteworthy that even a network with only a fully connected output layer achieved a test
argmax error of approximately 0.08, while the addition of multiple layers of sparse, randomly con-
nected neurons reduced the test argmax error to 0.0231 (i.e., 231 misclassifications in 10,000 test
samples). These preliminary results suggest that random sparse connectivity in deep networks can
be both stable and effective, provided that the overall capacity is sufficient. All training was com-
pleted using 8 CPU cores (4.0 GHz) over 9 days, without GPU acceleration, and no data leakage
was observed.
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Figure 2: Effect of increasing the layer count on test argmax error and total parameter count.
Increasing layer count without increasing neuron count or input count results in suboptimal perfor-
mance, as indicated by the horizontal error branches.
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Figure 3: Effect of increasing the neuron count on test argmax error and total parameter count.
Similar to the layer count, increasing neuron count alone does not yield significant improvements in
accuracy.
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Figure 4: Effect of increasing the neuron input count on test argmax error and total parameter
count. Networks with a higher number of inputs per neuron consistently achieve lower test argmax
errors.
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Figure 5: 3D scatter plot (front view) showing the relationship between layer count, neuron count,
neuron input count, and test argmax error.
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Figure 6: 3D scatter plot (back view) illustrating the combined effects of the key parameters on
test argmax error.
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5 Conclusion

We have presented a literature review and a novel framework for deep neural networks that employs
random sparse connectivity in the hidden layers combined with a fully connected output layer.
Our methodology, based on constructing a modular computational graph and an efficient training
procedure, demonstrates that increasing the number of random inputs per neuron can be more
beneficial than simply increasing network depth or width. These initial results on the MNIST
dataset suggest that randomized sparse connectivity is a promising direction for future research,
particularly in settings where parameter efficiency is critical. Future work will involve more detailed
experiments and further exploration of extremely deep and wide networks.
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